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Abstract
A Green’s function technique is applied for the Heisenberg model to study
the influence of the magnetic surface single-ion anisotropy on the spin wave
spectrum including damping effects in ferromagnetic thin films. It is shown that
the magnetic surface anisotropy strongly affects the thickness dependence of
different quantities: for strong surface anisotropy, the magnetization, the spin-
wave energy and the phase transition temperature TC are larger in thin films
than in the bulk, whereas the opposite is true for small surface anisotropy. The
magnetic surface anisotropy enhances the spin-wave damping. There is some
competition between the surface single-ion anisotropy and the surface exchange
interaction. The effect of an external magnetic field is discussed, too.

1. Introduction

The discovery of the phenomenon of perpendicular anisotropy has gained much interest in
recent years. It has opened new possibilities for memory applications. Ferromagnetic thin films
have been widely investigated for use as a data storage medium in magneto-optic or magneto-
recording systems [1]. As the bandwidth of magneto-electronic devices approaches microwave
frequencies, the role of damping in the switching response of magnetic thin films becomes ever
more important. Details of the intrinsic mechanism underlying damping in ferromagnetic thin
films remain unclear, despite extensive study [2–6].

The direction of the magnetization of thin ferromagnetic films depends on various
anisotropic energy contributions like surface anisotropy fields which often favour an orientation
perpendicular to the film, dipole interaction which favours an in-plane magnetization, and
eventually anisotropy fields in the inner layers. In particular, with increasing temperature a
reversible perpendicular to in-plane rotation as well as the reverse reorientation was observed.
The magnetic anisotropy out of plane as well as in plane plays an important role in potential
applications including half metallic magnetic tunnel junctions and magnetic perpendicular
recording, as well as in fundamental investigations of magnetoresistance. The direction
of magnetization relative to the body that supports it is determined mainly by two effects,
shape anisotropy and magnetocrystalline anisotropy. The first arises from magnetostatic
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effects and the second from spin–orbit coupling between the spins and the lattice of the
material. The magnetostatic effects can be calculated from micromagnetic calculations, but the
magnetocrystalline anisotropy must be computed from the electronic structure of the material.

Magnetic domains in ferromagnetic materials are generated in order to minimize the sum
of energy terms, e.g., the magnetostatic, the exchange, the anisotropy, and the Zeeman energies.
In bulk magnetic materials the magnetostatic coupling is normally small compared to the
exchange interaction. In the array of magnetic elements the exchange interaction between
the different elements is absent and therefore the magnetic properties of the array are governed
by the magnetostatic coupling [7]. As has been shown both experimentally and theoretically,
in patterned magnetic nanostructures the magnetostatic inter-element coupling can play an
essential role and strongly affect their magnetic properties. Where the magnetic film has infinite
lateral extension and is uniformly magnetized in the film plane, there is a demagnetizing field
for a film. This magnetostatic field in a film with infinite lateral dimensions is not uniform
close to the surface [45, 46]. So there is a non-zero magnetostatic energy in thin films and
magnetostatic problems can be considered from discrete or semicontinuum models. If the
film has a finite size, the surface charging has to be taken into account, which leads to a
demagnetizing field. In the present paper the effects of magnetostatic interactions are neglected.

There is increasing activity in experimental [8–12] and theoretical [13–20] investigations
to study the magnetic anisotropy in thin magnetic films. The main anisotropy contributions
in thin films are the dipole interaction and the surface or interface lattice anisotropy due to
the broken symmetry [21]. In addition, since most magnetic thin films on top or in between
nonmagnetic material are distorted due to lattice mismatch, also the film interior layers may
exhibit a strong volume anisotropy comparable to the surface anisotropy, which should not be
neglected [22]. Magnetic anisotropies exhibit a strong temperature dependence mainly through
the magnetization [23, 24]. Furthermore, these effective anisotropies are layer dependent, since
for thin films the relative magnetization itself is layer dependent [25]. Usually, the magnetic
anisotropy constants in thin films are found experimentally to be larger than that of the bulk
materials [9, 10, 25–28]. Recently, Brune and co-workers [47] have introduced a method
enabling the identification of the remarkably different contributions of surface and perimeter
atoms to the magnetic anisotropy energy of two-dimensional nanostructures. They have shown
for Co nanostructures on a Pt(111) surface that their uniaxial out-of-plane magnetization
is entirely caused by edge atoms having 20 times more anisotropy energy than their bulk
and surface counterparts. Identification of the role of perimeter and surface atoms opens
up unprecedented opportunities for materials engineering. Another quite interesting series
of results on magnetic surface and interface anisotropy with different interfaces came from
Moessbauer experiments made by Shinjo and co-workers [48] and Walker and co-workers [49].
These authors observed quite numerous magnetic reconstructions close to the magnetic surface
in different iron based and cobalt based cases.

Theoretically, it has been shown that the anisotropy coefficients Kn(T ), which are
generally temperature dependent, can be calculated numerically at finite temperature within
mean field theory, starting from a Hamiltonian with microscopic constant anisotropy
parameters [14]. Strong anisotropies as compared to the exchange coupling and
strongly different surface and volume anisotropies may induce a noncollinear thin film
magnetization [15]. The thermal variation of the magnetization in ferromagnetic thin films is
calculated by Pinettes and Lacroix [13] using the Holstein–Primakoff transformation which is
valid for T � TC/3. Jensen and Bennemann [16] obtained the temperature driven continuous
and discontinuous reorientation of the magnetization in thin ferromagnetic films. Froebrich
et al [17] presented a formal theory for the magnetization of thin ferromagnetic films on the
basis of many-body Green’s function theory within a Heisenberg model with anisotropies. The
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single-ion anisotropy terms are treated exactly by introducing higher-order Green’s functions.
The behaviour of ferromagnetic systems with single-ion anisotropies in more than one direction
is investigated by Wang et al [18] with many-body Green’s function theory. The effects
of the exchange anisotropy and the single-ion anisotropy on the magnetic properties of thin
ferromagnetic films are compared by Froebrich and Kuntz [19]. Schwieger et al [20] have
considered the spin reorientation transition in a ferromagnetic Heisenberg monolayer with a
second-order single-ion anisotropy as a function of temperature and external field. Using a
Green-function decoupling method for spin 1/2 and the Heisenberg Hamiltonian taking into
account the surface anisotropy coupling, Levy et al [29] have introduced the idea of ‘hard’
and ‘soft’ surfaces in ferromagnetic thin films according to their surface anisotropy, with a
possible magnetic rearrangement close to the surface. A complementary study was reported
by Levy [30] about ultra-thin films. First principles relativistic study of spin waves in thin
magnetic films based on the adiabatic approach is presented in [31]. It is shown that the
magnetocrystalline anisotropy energy contains contributions from both the on-site anisotropy
surfaces and the off-site exchange coupling terms. The magnetic anisotropy energy and the
interlayer exchange coupling of prototype trilayers are calculated using an ab initio approach
based on the experimental lattice spacing [32].

In this paper we examine the single-ion anisotropy as a factor which contributes to the
magnetic anisotropy and influences the static and dynamic properties of ferromagnetic thin
films. To our knowledge the influence of the anisotropies on the damping has not been studied
theoretically till now. We obtain some competition between the surface single-ion anisotropy
and the surface exchange interaction.

2. Model and matrix Green’s function

We consider a three-dimensional ferromagnetic system on a simple cubic (sc) lattice composed
of N layers in the z-direction. The layers are numbered by n = 1 · · · N , where the layers
n = 1 and n = N represent the two surfaces of the system. The bulk is established by the other
layers. We start with the Hamiltonian of the Heisenberg model including a single-ion uniaxial
anisotropy and an external magnetic field:

HM = − 1
2

∑

l,δ

Jl,l+δSl Sl+δ +
∑

i

Di (Sz
i )

2 − gµB H0

∑

l

Sz
l , (1)

where the first term represents the isotropic exchange interactions and the second the single-
ion anisotropic interactions. The exchange constants J and D are supposed to be positive and
negative, respectively. The parameter Ji j is an exchange interaction between spins at nearest-
neighbour sites i and j . To take into account the effects originated by the finite thickness of
the system, we introduce two interaction parameters Jb and Js. In the case of an interaction
between spins, situated at the surface layer, the interaction strength is denoted by Ji j = Js.
Otherwise, the interaction in the bulk material is written as Jb, which is for simplicity assumed
to be the same for the inter-layer coupling between the surface layer and the bulk as well as the
intra-layer coupling between the different layers in the bulk. A similar notation is used for the
single-ion anisotropy parameter Di = Ds for the surface and Di = Db for the bulk. H0 is a
static magnetic field applied in the z direction.

In order to study the magnon excitations of the film we introduce the following retarded
Green’s function:

Gi j(t) = 〈〈S+
i (t); S−

j (0)〉〉, (2)
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where S+ and S− are the spin operators. On introducing the two-dimensional Fourier transform
Gni n j (k‖, E), one has the following form:

〈〈S+
i ; S−

j 〉〉E = 2〈Sz〉
N ′

∑

k‖

exp(ik‖(ri − r j ))Gni n j (k‖, E), (3)

where N ′ is the number of sites in any of the lattice planes, ri and ni represent the position
vectors of site i and the layer index, respectively, and k‖ = (kx, ky) is a two-dimensional
wavevector parallel to the surface. The summation is taken over the Brillouin zone.

For the approximate calculation of the Green’s function (2) we use a method proposed by
Tserkovnikov [33], which is appropriate for spin problems. As a result the equation of motion
for the Green’s function (3) of the ferromagnetic thin film for T � Tc has the following matrix
form:

H(E)G(k‖, E) = R, (4)

where H(E) can be expressed as

H(E) =




E − v1 + i�1 k1 0 0 0 0 . . .

k2 E − v2 + i�2 k2 0 0 0 . . .

0 k3 E − v3 + i�3 k3 0 0 . . .
...

...
...

...
...

...
. . .

0 0 0 0 0 kN E − vN + i�N




with

kn = J 〈Sz
n〉, n = 1, . . . , N,

vn = 4Jn〈Sz
n〉(1 − γ (k‖)) + Jn−1〈Sz

n−1〉 + Jn+1〈Sz
n+1〉 + 2(Jn−1 + 2Dn−1)〈Sz

n−1〉〈Sz
n〉

+ 2(Jn+1 + 2Dn+1)〈Sz
n+1〉2 + 2Dn〈Sz

n〉,
�n = 2π〈Sz

n〉2

N ′2

∑

q‖p‖

[
V 2

n (k‖, q‖, p‖) + D2
n

][
n̄n

p‖(1 + n̄n
k‖−q‖ + n̄n

p‖+q‖)

− n̄n
k‖−q‖ n̄n

p‖+q‖

]
δ(En

p‖+q‖ + En
k‖−q‖ − En

p‖ − En
k‖),

Vn(k‖, q‖, p‖) = (Jq‖ + Jk‖−q‖−p‖) − (Jk‖−q‖ + Jp‖+q‖),

γ (k‖) = 1
2 (cos(kxa) + cos(kya)).

〈Sz
n〉 is the spin magnetization. n̄q‖ = 〈S+

q‖ S−
q‖ 〉 is the spin correlation function which is

calculated via the spectral theorem. E(k‖) is the spin-wave energy, which is calculated in
the random phase approximation.

In order to obtain the solutions of the matrix equation (4), we define two-dimensional
column matrices Gm with the elements given by (Gn)m = Gmn and (Rn)m = 2〈Sz

n〉δmn , so that
equation (4) yields:

H(E)Gn = R. (5)

From equation (5), Gnn(E) is obtained as

Gnn(E) = |Hnn(E)|
|H (E)| , (6)

where |Hnn(E)| is the determinant made by replacing the nth column of the determinant
|H (E)| by Rn . The poles En of the Green’s function Gnn(E) can be obtained by solving
|H (E)| = 0.

The thermal average of a spin in the nth layer for arbitrary magnitude of S is given by [34]

Mn = 〈Sz
n〉 = 1

N ′
∑

k‖

[(S + 0.5) coth[(S + 0.5)β En] − 0.5 coth(0.5β En)] . (7)
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Figure 1. Temperature dependence of the
magnetization M for a ferromagnetic thin film
with Jb = Js = 0.4 eV, Db = −0.1 eV,
H = 0, N ′ = 2500, N = 7 and different
Ds-values: (1) Ds = −0.05, (2) −0.1, (3)
−0.3 eV.

3. Numerical results and discussion

In this section we shall present the numerical calculations of our theoretical results taking the
following model parameter: Jb = 0.4 eV, Db = −0.1 eV, S = 3/2. We have calculated
the temperature dependence of the magnetization, the phase transition temperature, the spin-
wave energies and the damping of the thin film for different values of the magnetic surface
anisotropy constants. One has to solve self-consistently the N coupled equations (7) to obtain
the layer magnetization. To characterize the complete ferromagnetic system both quantities,
the magnetization and the spin-wave energy, are averaged over the N layers. The results
for film thickness N = 7 and different surface single-ion anisotropies Ds are presented in
figures 1 and 2. For the case of small surface anisotropies, when Ds < Db and has the value
Ds = −0.05 eV (compare figures 1, 2—curve 1) the magnetization (respectively the spin-wave
energy) is smaller than the case of Ds = Db (see figures 1, 2 curve 2). The magnetization
decreases with increasing temperature to vanish at the critical temperature TC of the thin film.
The critical temperature decreases due to the smaller Ds value. The small anisotropy case is in
qualitatives agreement with experimental data on thin magnetic films, as in Ag/Fe(d)/W [34]
and Ni(d)/Re [35].

In any case, the bulk anisotropy is negligible with respect to the dominating interface
contribution [9]. Usually, the magnetic anisotropy constants in thin films are found to
be larger than that of the bulk materials [9, 10, 25]. Epitaxial CoPt3(111) films exhibit
strong perpendicular magnetic anisotropy and are therefore potential materials for high-
density magneto-optical recording [26]. Bochi et al [27, 28] have obtained a strong surface
magnetoelastic anisotropy in epitaxial Cu/Ni/Cu (001) sandwiches and epitaxial fcc (111)
Co/Cu superlattices, respectively. For the case of strong surface anisotropies, where Ds =
−0.3 eV (figures 1, 2—curve 3), i.e. Ds > Db, the magnetization (respectively the spin-
wave energy) is larger than in the case Ds = Db. The TC of the film is enhanced due to
the presence of larger Ds values. This is the opposite behaviour compared to the case of
Ds = −0.05 eV, Ds < Db. Sulitanu and Brinza [11] have considered Ni–W films and
obtained a large perpendicular anisotropy constant associated with relatively high saturation
magnetization, which should be used as alternative media for ultrahigh density perpendicular
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Figure 2. Temperature dependence of the
spin-wave energy for a ferromagnetic thin film
with Jb = Js = 0.4 eV, Db = −0.1 eV, k = 0,
H = 0, N = 7 and different Ds-values: (1)
Ds = −0.05, (2) −0.1, (3) −0.3 eV.

magnetic recording. Our theoretical results for the strong anisotropy case are in qualitative
agreement with the experimental data [9–11, 25–28].

From figures 1 and 2 we observe that the magnetization, the spin-wave energy and the criti-
cal temperature of the ferromagnetic phase transition are increased or decreased due to different
surface anisotropy constants. But the changes of the physical properties cannot be described by
a single parameter such as the surface magnetic anisotropy Ds. For example the concurrence
between surface exchange interaction and surface magnetic anisotropy can be seen in figure 3.
It is shown the influence of the surface exchange interaction constant Js on the magnetization
and the Curie temperature TC. The results in figures 1 and 2 are obtained for Js = Jb, i.e. the
impact of the surface exchange interaction is negligible, which is not so realistic. But when
the surface exchange interaction is smaller compared to the bulk value, Js � Jb, then it would
also contribute to the decrease of the Curie temperature TC. If the influence of Js is greater
than that of Ds (figure 3 curve 1), then the magnetization, the spin-wave energy and TC can be
smaller than the bulk values although Ds > Db (compare figure 1, curve 3). With decreasing
of Js we obtain some coexistence or competition between the surface exchange interaction and
the surface anisotropy effects, which is not considered till now. There exists for Ds > Db and
Ds = constant a ‘critical’ value of Js below which the Curie temperature is smaller in com-
parison to the bulk value. Analogously we can obtain that in the case of Ds < Db the Curie
temperature of the thin film can increase, for example when Js � Jb and Ds = constant the
Curie temperature and the magnetization are greater compared to the bulk (figure 3 curve 2;
compare figure 1, curve 1). There exists for Ds < Db and Ds = constant a ‘critical’ value of
Js above which the Curie temperature is greater in comparison to the bulk value.

The ferromagnetic temperature TC of the thin magnetic film is found to be shifted with
respect to the critical temperature of the bulk crystal. Moreover, the temperature shift appeared
to be surface anisotropy dependent (figure 4). For Ds < Db we obtain a decrease of TC with
decreasing film thickness, whereas for Ds > Db an increase. We obtain a similar behaviour for
the magnetization and the spin wave energies, too.

We have calculated the temperature dependence of the damping from � = 1
N

∑
n �n for

a simple cubic thin film for different values of the surface magnetic anisotropy constants.
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Figure 3. Temperature dependence of the
magnetization M for a ferromagnetic thin film
with Jb = 0.4 eV, Db = −0.1 eV, H = 0,
N ′ = 2500, N = 7 and different surface
parameters: (1) Js = 0.1, Ds = −0.3 eV (2)
Js = 0.7 eV, Ds = −0.05 eV.

Figure 4. The dependence of the phase transi-
tion temperature TC on the film thickness for
Jb = 0.4 eV, Js = 0.2 eV, Db = −0.1 eV,
H = 0 and different Ds-values: (1) Ds =
−0.05; (2) −0.3 eV.

The results for film thickness N = 7 and different Ds-values are presented in figure 5.
The damping increases with increasing temperature, T → TC, of the thin film. This could
explain the observed experimental broadening of the resonance peaks in ferromagnetic thin
films as the temperature approaches TC [36]. It can be seen that the damping is always larger
for both cases, small surface anisotropy Ds < Db (curve 2) and strong surface anisotropy
Ds > Db (curve 3) in comparison to the case Ds = Db (curve 1). It increases due to the
surface anisotropy effects. The damping, which is related to the linewidth in ferromagnetic
resonance and Brillouin scattering experiments, increases with decreasing of the film thickness,
which is in agreement with the experimental data [37, 38]. There are different mechanisms
in thin films which contribute additively to the increasing of the damping such as surface
effects [3], electron–phonon interactions [4], spin–phonon interactions [6], defects [5] and
surface magnetic anisotropies which are considered in this paper.
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Figure 5. Temperature dependence of the
damping � for a ferromagnetic thin film with
Jb = Js = 0.4 eV, Db = −0.1 eV, k = 0,
H = 0, N = 7 and different Ds-values: (1)
Ds = −0.1; (2) −0.05; (3) −0.3 eV.

Figure 6. Spin-wave energies for ferromag-
netic thin films as a function of the inten-
sity of the external magnetic field H0 for
Jb = 0.4 eV Js = 0.2 eV, Db = −0.1 eV,
Ds = −0.05 eV and different film thick-
nesses: (1) N = 7; (2) 11.

Figure 6 shows the dependence of the spin-wave energy on the external magnetic field H0

parallel to the magnetization for different film thicknesses. The spin-wave energy increases
with increasing of H0 and film thickness. This is in agreement with the experimental data of
Tacchi et al [40]. If the external field is antiparallel to the magnetization direction, then the
spin-wave energy decreases, in accordance with the experimental data of Acher et al [41].

The spin-wave damping � is numerically calculated in dependence on temperature, film
thickness and magnetic field. At low temperatures, the damping is extremely small, smaller
than the spin-wave energy, then with approaching of the critical temperature TC it strongly
increases [21]. Figure 7 demonstrates the film thickness dependence of the damping for
different magnetic fields. For thinner films the damping is larger in comparison to thicker films.
With increasing of the intensity of the external magnetic field the damping increases, too. The
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Figure 7. Film thickness dependence
of the spin-wave damping � for Jb =
0.4 eV Js = 0.2 eV, Db = −0.1 eV,
Ds = −0.05 eV, k = 0 and for
different external magnetic fields: (1)
H0 = 5 kOe, (2) 10 kOe.

obtained results are in good qualitative agreement with the experimental data of Azevedo et al
[42], Rezende et al [43] and Fermin et al [44].

4. Conclusions

Using a Green’s function technique the magnetization, the phase transition temperature, the
spin-wave energy and the damping for ferromagnetic thin films are calculated and discussed
for different temperatures, different surface magnetic anisotropy constants Ds in comparison to
the bulk value Db and different external magnetic fields. The magnetization and TC decrease
for Ds < Db and increase for Ds > Db, respectively. The spin-wave energies are reduced in the
first case and enhanced in the second case. The influence of the surface magnetic anisotropy
constant on the transverse damping is obtained for the first time. It is shown that Ds can
induce strong increasing of the damping in both cases of small or strong surface anisotropy.
With increasing of the intensity of the external magnetic field the damping increases, too. The
damping in thin films is greater compared to the bulk case due to different mechanisms which
contribute additively to the damping, due to surface and substrate effects, electron–phonon
interactions, spin–phonon interactions, defects, external magnetic fields and surface magnetic
anisotropies which are considered in this paper.

It is shown that the changes of the physical properties cannot be described by a single
parameter such as the surface magnetic anisotropy constant. We have seen that if we include
a third effect, for example the influence of the surface exchange interaction, we can obtain
the reverse result. The changes of the properties are the result of competition or coexistence
between various mechanisms due to surfaces, film thickness, defects, spin–phonon interactions,
substrates etc, and all must be taken into account in order to obtain correct results and if we
want to explain the experimental data.
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